

European Technical Assessment

ETA 21/0062 of 24/11/2021

Technical Assessment Body issuing the ETA: Technical and Test Institute for Construction Prague

Trade name of the construction product

R-XPTIII-HD

Product family to which the construction

product belongs

Product area code: 33

Torque controlled expansion anchor for use in uncracked concrete

Manufacturer

Rawlplug S.A. Ul. Kwidzyńska 6 51-416 Wrocław Poland

Manufacturing plant

Manufacturing Plant No 2

This European Technical Assessment contains

10 pages including 8 Annexes which form an integral part of this assessment

This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of

EAD 330232-01-0601

Mechanical fasteners for use in concrete

This version replaces

ETA 21/0062 issued on 09/08/2021

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

1. Technical description of the product

The R-XPTIII-HD are through-fixing torque-controlled expansion anchors in sizes of M8, M10, M12 and M16. Each type comprises a nut, bolt, washer and expansion sleeve. The anchors are made from hot dip galvanized carbon steel.

The anchor is installed in a drilled hole; tightening the nut draws the cone into the sleeve. The expansion of this sleeve applies the anchorage.

The installed anchor is shown in Annex 1.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance (static and quasi-static loading)	See Annex C 1 and C 2
Displacement	See Annex C 1 and C 2

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1 according to EN 13501-1
Resistance to fire	No performance assessed

4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

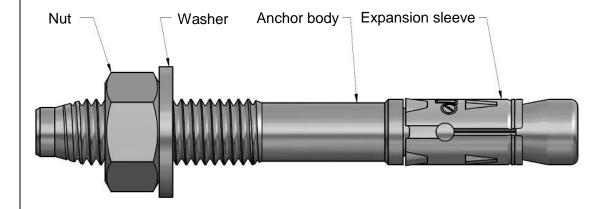
According to the Decision 97/463/EC of the European Commission¹, the system 1 of assessment verification of constancy of performance (see Annex V to the Regulation (EU) No 305/2011) apply.

5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Technical and Test Institute for Construction Prague.


Issued in Prague on 24.11.2021

Ву


Ing. Mária Schaan

Head of the Technical Assessment Body

Official Journal of the European Communities L 198/31 25.7.1997

R-XPTIII-HD - components

Table A1 - Materials

Component	Material	Coating
Anchor body	Carbon steel, ISO 898-1 Rupture elongation A ₅ > 8%	Hot dip galvanized, ISO 10684
Expansion sleeve	Stainless steel grade 1.4401 or 1.4404 EN 10088-2	
Hexagonal nut	according DIN 934	Hot dip galvanized, ISO 10684
Washer	according DIN 125A or DIN 9021	Hot dip galvanized, ISO 1461

R-XPTIII-HD	
Product description Materials	Annex A 2

Table A2 –	Marking
Bolt length	Marking

Bolt length	Marking	Sizes				
Doit length	Marking	M8 M10 M12			M16	
		IVIO		mm]	10110	
65	b	1	T GIX [······j	I	
70	#	5	1			
75	C	10	5			
80	D	15	10			
85	d	20	15			
90	E	25	20			
95	е	30	25	1		
100	F	35	30	5		
105	f	40	35	10		
110	G	45	40	15		
115	g	50	45	20		
120	H	55	50	25	1	
125	h	60	55	30	5	
130	J	65	60	35	10	
135	I	70	65	40	15	
140	K	75	70	45	20	
145	k	80	75	50	25	
150	L	85	80	55	30	
155	2	90	85	60	35	
160	М	95	90	65	40	
165	m	100	95	70	45	
170	N	105	100	75	50	
175	n	110	105	80	55	
180	Р	115	110	85	60	
185	0	120	115	90	65	
190	W		120	95	70	
195	z		125	100	75	
200	R		130	105	80	
205	r			110	85	
210	3			115	90	
215	4			120	95	
220	S			125	100	
225	6			130	105	
230	7			135	110	
235	8			140	115	
240	T			145	120	
245	t			150	125	
250	U			155	130	
255	aa			160	135	
260	V			165	140	
265	bb			170	145	
270	CC		.	175	150	
275	dd		.	180	155	
280	X			185	160	
285	ee			190	165	
290	FF			195	170	
295	ff			200	175	
300	Υ			205	180	

R-XPTIII-HD	
Product description Marking	Annex A 3

Specifications of intended use

Anchorages subject to:

Static and quasi-static load.

Base materials

- Uncracked concrete.
- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum and C50/60 at maximum according EN 206-1:2000-12.

Use conditions (Environmental conditions)

• Structures subject to dry internal conditions.

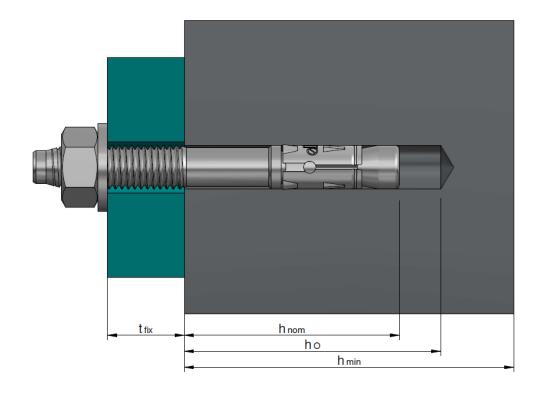
Design:

- The anchorages are designed in accordance with the EN 1992-4 under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.
 The position of the anchor is indicated on the design drawings.

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Use of the anchor only as supplied by the manufacturer without exchanging any components of the anchor.
- Anchor installation in accordance with the manufacturer's specifications and drawings using the appropriate tools.
- Effective anchoring depth, edge distance and spacing not less than the specified values without minus tolerance.
- In case of aborted drill hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.

R-XPTIII-HD	
Intended use Specifications	Annex B 1


Table B1 - Installation parameters

	Drill hole	Max. hole	Min. hole	Nominal	Min. concrete	Installation
Size	diameter	diameter in	depth	embedment	thickness	torque
		fixture		depth		
	d₀ [mm]	d _f 1) [mm]	h₀ [mm]	h _{nom} [mm]	h _{min} [mm]	T _{inst} [Nm]
M8	8	9	65	55	100	15
M10	10	12	70	60	100	30
M12	12	14	90	80	140	50
M16	16	18	110	100	170	100

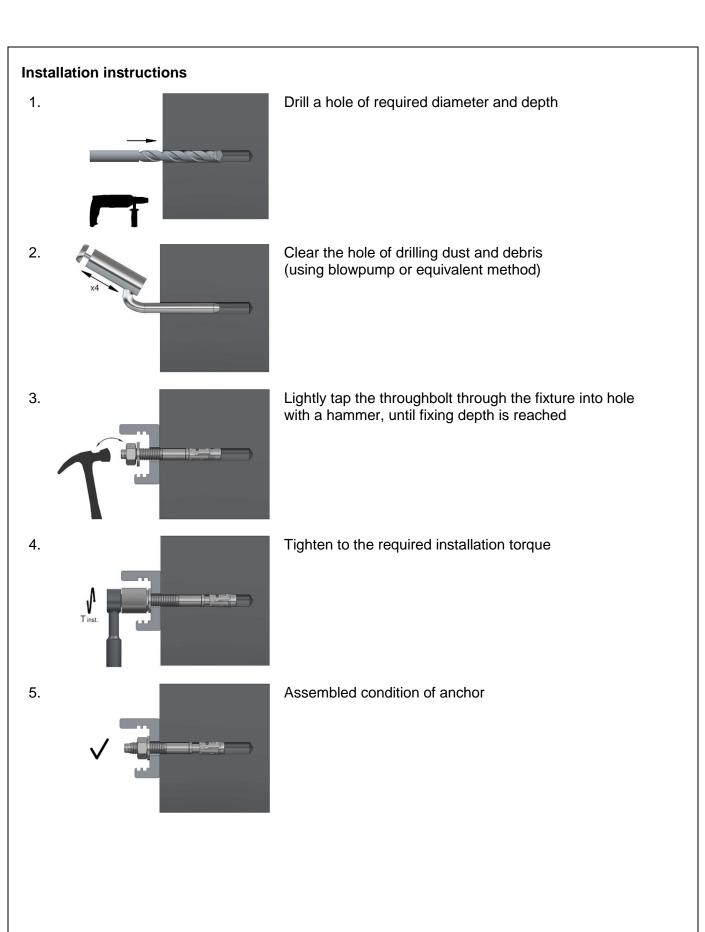

¹⁾ For the design of bigger clearance holes in the fixture see EN 1992-4:2018

Table B2 - Installation parameters - Minimum spacing and edge distance

Size			M8	M10	M12	M16
Minimum thickness of concrete member h _{min} [mm]			100	100	140	170
Minimum spacing s _{min} [mm]		[mm]	50	70	75	95
for ed	dge distance c≥	[mm]	55	80	90	150
Minimum edge distance	C _{min}	[mm]	40	60	65	85
	for spacing s ≥	[mm]	100	100	100	160

R-XPTIII-HD	
Intended use Installation parameters	Annex B 2

R-XPTIII-HD	
Intended use Installation instructions	Annex B 3

Table C1 -	Characteristic	resistance	under	tension load	

Size		- -	-	M8	M10	M12	M16	
Steel failure								
Characteristic resistant	ce	$N_{Rk,s}$	[kN]	17,5	27,6	40,0	71,0	
Partial safety factor		γMs	[-]		1,	,5		
Pull-out failure								
Characteristic resistance in uncracked concrete C		$N_{Rk,p}$	[kN]	13	15	25	34	
Installation safety facto	r	γinst	[-]	1,0	1,0	1,0	1,0	
Increasing factor								
	C30.	/37		1,12	1,08	1,17	1,22	
Uncracked concrete	C40.	/50 ψc	[-]	1,23	1,15	1,32	1,41	
	C50.	/60		1,30	1,19	1,42	1,55	
Concrete cone and sp	olitting failure							
Effective embedment of		h _{ef}	[mm]	47	50	68	85	
Factor for concrete cone	failure for uncracked concr	rete kucr,N	[-]	11,0				
Installation safety facto	Installation safety factor γ _{inst}		[-]	1,0				
concrete cone failure		Scr,N	[mm]	3 • h _{ef}				
Spacing	splitting failure	Scr,sp	[mm]	240	260	340	430	
Edge distance	concrete cone failure	Ccr,N	[mm]		1,5	• h _{ef}	·	
Luge distance	splitting failure	C _{cr,sp}	[mm]	120	130	170	215	

Table C2 – Displacement under tension load

Size			M8	M10	M12	M16
Tension load in uncracked concrete	Ν	[kN]	5,7	7,1	11,4	16,2
Displacement	δ_{N0}	[mm]	0,3	0,3	0,4	0,2
	$\delta_{\text{N}^{\infty}}$	[mm]	0,6	0,6	0,6	0,6

R-XPTIII-HD	
Performances Characteristic resistance under tension load Displacement under tension load	Annex C 1

Table C3 -	 Characteristic 	resistance	under shear	' load

Steel failure without lever arm						
Size			M8	M10	M12	M16
Characteristic resistance	V^0 Rk,s	[kN]	11,0	17,4	25,3	47,1
Ductility factor	k ₇	[-]	1,0	1,0	1,0	1,0
Partial safety factor	γMs	[-]	1,25	1,25	1,25	1,25

Steel failure with lever arm						
Characteristic resistance	M^0 Rk,s	[Nm]	22	45	79	200
Partial safety factor	γMs	[-]	1,25	1,25	1,25	1,25

Concrete pry-out failure						
Factor	k ₈	[-]	1,0	1,0	2,0	2,0
Installation safety factor	γinst	[-]	1,0	1,0	1,0	1,0

Concrete edge failure						
Effective length of anchor	l f	[mm]	47	50	68	85
Anchor diameter	d_{nom}	[mm]	8	10	12	16
Installation safety factor	γinst	[-]	1,0	1,0	1,0	1,0

Table C4 – Displacement under shear load

Size			M8	M10	M12	M16
Shear load in uncracked concrete	V	[kN]	6,3	9,9	14,5	26,9
Displacement	δνο	[mm]	1,2	1,3	1,6	1,9
	δν∞	[mm]	1,8	2,0	2,4	2,9

R-XPTIII-HD	
Performances	Annex C 2
Characteristic resistance under shear load	Aimox 6 2
Displacement under shear load	