





### **European Technical Assessment**

### ETA 17/0185 of 16/12/2021

Technical Assessment Body issuing the ETA: Technical and Test Institute for Construction Prague

Trade name of the construction product

Rawlplug R-HPTIIA4 Stainless Steel

**Throughbolts** 

Product family to which the construction

Product area code: 33

product belongs

Torque controlled expansion anchor for use in cracked and uncracked concrete

Manufacturer

eota@tzus.cz

Rawlplug S.A. Ul. Kwidzyńska 6 51-416 Wrocław Poland

Manufacturing Plant No 2

**This European Technical Assessment** 

contains

12 pages including 10 Annexes which form an integral part of this assessment

This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of

EAD 330232-01-0601

This version replaces

**Manufacturing plant** 

ETA 17/0185 issued on 02/10/2017

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

### 1. Technical description of the product

The Rawlplug R-HPTIIA4 Stainless Steel Throughbolts are through-fixing torque-controlled expansion anchors in sizes of M8, M10, M12 and M16. Each type comprises a special bolt with a taper, an expansion sleeve, a hexagonal nut and a washer. The anchors are made from A4 grade stainless steel.

The anchor is installed in a drilled hole; tightening the nut draws the cone into the sleeve. The expansion of this sleeve applies the anchorage.

The installed anchor is shown in Annex 1.

### 2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

### 3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                                             | Performance           |
|----------------------------------------------------------------------|-----------------------|
| Characteristic resistance (static and quasi-static loading)          | See Annex C 1 and C 2 |
| Displacement                                                         | See Annex C 1 and C 2 |
| Characteristic resistance for seismic performance category C1 and C2 | See Annex C 4 and C 5 |

3.2 Safety in case of fire (BWR 2)

| Essential characteristic | Performance                      |
|--------------------------|----------------------------------|
| Reaction to fire         | Class A1 according to EN 13501-1 |
| Resistance to fire       | Seen Annex C 3                   |

### 4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 97/463/EC of the European Commission<sup>1</sup>, the system 1 of assessment verification of constancy of performance (see Annex V to the Regulation (EU) No 305/2011) apply.

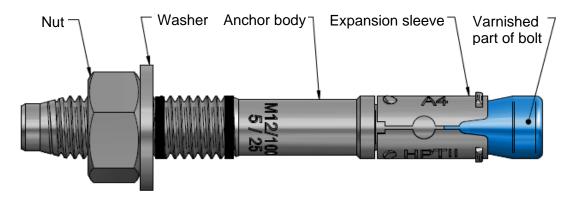
### 5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Technical and Test Institute for Construction Prague.

Issued in Prague on 16.12.2021

By

Ing. Mária Schaan


Head of the Technical Assessment Body

\_

Official Journal of the European Communities L 198/31 25.7.1997

## Rawlplug R-HPTIIA4 Stainless Steel Throughbolts - Installed anchor Concrete Fixing element -Anchor-Rawlplug R-HPTIIA4 Stainless Steel Throughbolts Annex A 1 **Product description** Installed conditions

### Rawlplug R-HPTIIA4 Stainless Steel Throughbolts - components



### **Table A1 - Materials**

| Component        | Material                                                                     | Corrosion resistance  |
|------------------|------------------------------------------------------------------------------|-----------------------|
| Anchor body      | Steel rod on coil cold forged bolts Steel grade 1.4578, according EN 10263-5 |                       |
| Expansion sleeve | Steel grade 1.4401, according EN 10088-2                                     | Class CRC III         |
| Hexagonal nut    | according DIN 934                                                            | according EN 1993-1-4 |
| Washer           | according DIN 125A or DIN 9021                                               |                       |

### Table A2 - Marking

|                                            |      | <u>.</u>       |      |       |       |       |       |       |       |            |      |              |        |        |         |        |        |        |       |        |           |
|--------------------------------------------|------|----------------|------|-------|-------|-------|-------|-------|-------|------------|------|--------------|--------|--------|---------|--------|--------|--------|-------|--------|-----------|
|                                            |      |                |      |       |       |       |       |       | N     | <b>/18</b> |      |              |        |        |         |        |        |        |       |        |           |
| Bolt length                                | [mm] | 6              | 0    | 65    | 75    |       | 80    | 85    | 9     | 00         | 95   | ;            | 100    | 105    | 5 11    | 5      | 120    | 14     | 0     | 150    | 160       |
| Head marking                               |      | Е              | 3    | b     | С     |       | d     | D     |       | е          | Ε    |              | F      | f      | G       |        | Н      | K      |       | L      | M         |
| $t_{fix,std}/t_{fix,red}$                  |      | -/             | 10   | -/15  | 10/2  | 5 1   | 5/30  | 20/35 | 25    | /40 3      | 30/4 | 15 3         | 35/50  | 40/5   | 5 50/6  | 55 5   | 5/70   | 75/9   | 90 8  | 35/100 | 95/110    |
| M10                                        |      |                |      |       |       |       |       |       |       |            |      |              |        |        |         |        |        |        |       |        |           |
| Bolt length                                | [mm] | (              | 65   | 80    | 0     | 85    |       | 90    |       | 95         |      | 115          | ;      | 120    | 13      | 0      | 14     | 0      | 15    | 0      | 180       |
| Head marking                               |      |                | В    |       | )     | d     |       | е     |       | Е          |      | G            |        | Н      | J       |        | K      |        | L     |        | Р         |
| t <sub>fix,std</sub> /t <sub>fix,red</sub> |      | •              | ·/5  | -/2   | 20    | 5/2   | 5     | 10/30 | 1     | 5/35       | • •  | 35/5         | 5      | 40/60  | 50/     | 70     | 60/8   | 30     | 70/   | 90 1   | 00/120    |
|                                            |      |                |      |       |       |       |       |       | N     | l12        |      |              |        |        |         |        |        |        |       |        |           |
| Bolt length                                | [mm] | 80             | 100  | 105   | 110   | 115   | 120   | 125   | 135   | 140        | 15   | 50 1         | 60     | 180    | 200     | 220    | 24     | 0 2    | 250   | 260    | 280       |
| Head marking                               |      | D              | F    | f     | G     | g     | h     | Н     | J     | K          | L    | -            | М      | Р      | R       | S      | Т      |        | U     | V      | Х         |
| t <sub>fix,std</sub> /t <sub>fix,red</sub> |      | <del>/</del> 5 | 5/25 | 10/30 | 15/35 | 20/40 | 25/45 | 30/50 | 40/60 | 45/65      | 55   | <i>7</i> 5 6 | 5/85 8 | 35/105 | 105/125 | 125/14 | 5 145/ | 165 15 | 5/175 | 165/18 | 5 185/205 |
|                                            |      |                |      |       |       |       |       |       | N     | l16        |      |              |        |        |         |        |        |        |       |        |           |
| Bolt length                                | [mm] | 1(             | 00   | 105   | 12    | 25    | 130   | 14    | Ю     | 150        | 1    | 160          | ) ′    | 180    | 200     | 22     | 20     | 250    |       | 280    | 300       |
| Head marking                               |      | F              | =    | f     | H     | 1     | J     | k     | (     | L          |      | М            |        | Ρ      | R       | 5      | 3      | U      |       | Χ      | Υ         |
| t <sub>fix,std</sub> /t <sub>fix,red</sub> |      | -/             | 5    | -/10  | 5/2   | 25    | 10/30 | 20/   | 40    | 30/50      | 0    | 40/6         | 0 6    | 0/80   | 80/100  | 100/   | 1201   | 30/15  | 50 16 | 0/180  | 180/200   |

| Rawlplug R-HPTIIA4 Stainless Steel Throughbolts |           |
|-------------------------------------------------|-----------|
| Product description Materials, Marking          | Annex A 2 |

### Specifications of intended use

### **Anchorages subject to:**

- Static and quasi-static load.
- Fire exposure
- Seismic performance category C1
- Seismic performance category C2, only size M10, M12

### **Base materials**

- Cracked or uncracked concrete.
- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum and C50/60 at maximum according EN 206+A2.

### **Use conditions (Environmental conditions)**

- Structures subject to dry internal conditions.
- Structures subject to external atmospheric exposure (including industrial and marine environment) or exposure to permanently damp internal condition, if no particular aggressive conditions exist.

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

### Design:

- The anchorages are designed in accordance with the EN 1992-4 under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.
- Anchorages under fire exposure have to be designed in accordance with EN 1992-4, Annex D.
- Anchorages under seismic actions have to be designed in accordance with EN 1992-4, Annex C.

### Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Use of the anchor only as supplied by the manufacturer without exchanging any components of the anchor.
- Anchor installation in accordance with the manufacturer's specifications and drawings using the appropriate tools.
- Effective anchoring depth, edge distance and spacing not less than the specified values without minus tolerance.
- In case of aborted drill hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.

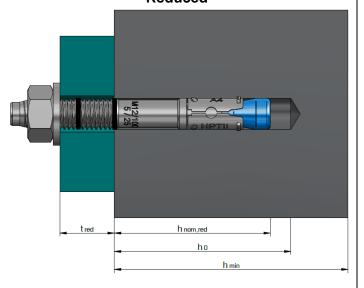
| Rawlplug R-HPTIIA4 Stainless Steel Throughbolts |           |
|-------------------------------------------------|-----------|
| Intended use<br>Specifications                  | Annex B 1 |

**Table B1 - Installation parameters** 

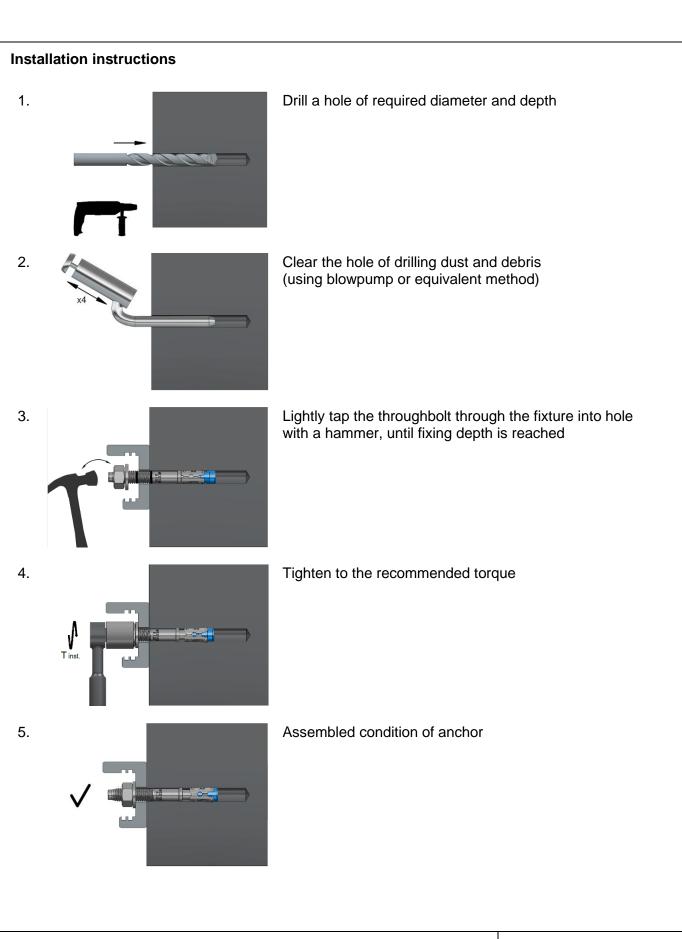
|      | Drill hole | Max. hole              | Standard e         | mbedment                      | Reduced e          | Installation                  |            |
|------|------------|------------------------|--------------------|-------------------------------|--------------------|-------------------------------|------------|
| Size | diameter   | diameter in fixture    | Min. hole<br>depth | Nominal<br>embedment<br>depth | Min. hole<br>depth | Nominal<br>embedment<br>depth | torque     |
|      | d₀ [mm]    | d <sub>f</sub> 1) [mm] | h₀ [mm]            | h <sub>nom</sub> [mm]         | h₀ [mm]            | h <sub>nom</sub> [mm]         | Tinst [Nm] |
| M8   | 8          | 9                      | 65                 | 55                            | 50                 | 40                            | 15         |
| M10  | 10         | 12                     | 79                 | 69                            | 59                 | 49                            | 30         |
| M12  | 12         | 14                     | 90                 | 70                            | 70                 | 60                            | 50         |
| M16  | 16         | 18                     | 110                | 90                            | 90                 | 80                            | 100        |

<sup>1)</sup> For the design of bigger clearance holes in the fixture see EN 1992-4:2018

Table B2 - Installation parameters - Minimum spacing and edge distance


| Table BE Installation parameter          |                                                       | **********        | <b>u O D I</b> | 40g t             | ina caç        | ,   | 41100 |     |     |     |  |  |
|------------------------------------------|-------------------------------------------------------|-------------------|----------------|-------------------|----------------|-----|-------|-----|-----|-----|--|--|
| Size                                     |                                                       |                   | M              | 18                | M <sup>2</sup> | 10  | M12   |     | M16 |     |  |  |
|                                          |                                                       | Red <sup>1)</sup> | Std            | Red <sup>1)</sup> | Std            | Red | Std   | Red | Std |     |  |  |
| Minimum thickness of concrete member     | $h_{\text{min}}$                                      | [mm]              | 100            | 100               | 100            | 120 | 100   | 140 | 130 | 170 |  |  |
| Minimum spacing and edge distance in cra | Minimum spacing and edge distance in cracked concrete |                   |                |                   |                |     |       |     |     |     |  |  |
| Minimum spacing                          | Smiin                                                 | [mm]              | 50             | 55                | 70             | 70  | 120   | 90  | 150 | 135 |  |  |
| for edge distance                        | c≥                                                    | [mm]              | 50             | 55                | 70             | 70  | 95    | 75  | 100 | 105 |  |  |
| Minimum edge distance                    | Cmin                                                  | [mm]              | 40             | 40                | 50             | 45  | 70    | 55  | 85  | 70  |  |  |
| for spacing                              | s≥                                                    | [mm]              | 80             | 70                | 120            | 90  | 150   | 140 | 200 | 200 |  |  |
| Minimum spacing and edge distance in und | crack                                                 | ed con            | crete          |                   |                |     |       |     |     |     |  |  |
| Minimum spacing                          | Smin                                                  | [mm]              | 50             | 55                | 70             | 70  | 120   | 90  | 150 | 135 |  |  |
| for edge distance                        | c≥                                                    | [mm]              | 50             | 55                | 70             | 70  | 95    | 75  | 100 | 105 |  |  |
| Minimum edge distance                    | Cmin                                                  | [mm]              | 50             | 40                | 60             | 50  | 70    | 55  | 90  | 80  |  |  |
| for spacing                              | s≥                                                    | [mm]              | 50             | 100               | 70             | 115 | 120   | 125 | 150 | 200 |  |  |

<sup>1)</sup> Use restricted to anchoring statically indeterminate structural components


### **Standard**

# t std hnom, std ho hmin

### Reduced



| Rawlplug R-HPTIIA4 Stainless Steel Throughbolts |           |
|-------------------------------------------------|-----------|
| Intended use Installation parameters            | Annex B 2 |



| Rawlplug R-HPTIIA4 Stainless Steel Throughbolts |           |
|-------------------------------------------------|-----------|
| Intended use Installation instructions          | Annex B 3 |

### Table C1 - Characteristic resistance under tension load

| Steel failure             |                        |     |                   |     |                   |     |      |     |      |     |
|---------------------------|------------------------|-----|-------------------|-----|-------------------|-----|------|-----|------|-----|
| Size                      |                        |     | M                 | 8   | M1                | 0   | M'   | 12  | M′   | 16  |
|                           |                        |     | Red <sup>1)</sup> | Std | Red <sup>1)</sup> | Std | Red  | Std | Red  | Std |
| Characteristic resistance | N <sub>Rk,s</sub> [kN] |     | 21,2              |     | 33,6              |     | 44,8 |     | 82,6 |     |
| Partial safety factor     | γMs                    | [-] | 1,                | 5   | 1,:               | 5   | 1,   | 5   | 1,   | 5   |

| Pull-out failure                                         |        |      |      |      |      |      |      |      |      |      |      |
|----------------------------------------------------------|--------|------|------|------|------|------|------|------|------|------|------|
| Characteristic resistance in cracked concrete C20/25 N   |        |      | [kN] | 3,0  | 6,0  | 7,5  | 9,0  | 9,0  | 12,0 | 16,0 | 25,0 |
| Characteristic resistance in uncracked concrete C20/25 N |        |      | [kN] | 7,5  | 9,0  | 12,0 | 16,0 | _2)  | 25,0 | _2)  | _2)  |
| Installation safety factor                               |        |      | [-]  | 1,2  | 1,2  | 1,2  | 1,0  | 1,0  | 1,0  | 1,0  | 1,0  |
| Increasing factor                                        |        |      |      |      |      |      |      |      |      |      |      |
|                                                          | C30/37 | ,    |      | 1,07 | 1,16 | 1,07 | 1,26 | 1,16 | 1,23 | 1,18 | 1,18 |
| Cracked and uncracked concrete                           | C40/50 | ) ψc | [-]  | 1,13 | 1,33 | 1,13 | 1,52 | 1,32 | 1,45 | 1,37 | 1,37 |
|                                                          | C50/60 | )    |      | 1,20 | 1,50 | 1,20 | 1,78 | 1,49 | 1,67 | 1,55 | 1,55 |

| Concrete cone failure         |                   |      |      |     |     |     |     |     |     |     |
|-------------------------------|-------------------|------|------|-----|-----|-----|-----|-----|-----|-----|
| Factor for uncracked concrete | $k_{ucr,N}$       | [-]  | 11,0 |     |     |     |     |     |     |     |
| Factor for cracked concrete   | $k_{cr,N}$        | [-]  |      |     |     | 7   | ,7  |     |     |     |
| Installation safety factor    | γinst             | [-]  | 1,2  | 1,2 | 1,2 | 1,0 | 1,0 | 1,0 | 1,0 | 1,0 |
| Effective anchorage depth     | h <sub>ef</sub>   | [mm] | 32   | 47  | 39  | 59  | 48  | 68  | 65  | 85  |
| Spacing                       | S <sub>cr,N</sub> | [mm] | 96   | 141 | 117 | 177 | 144 | 204 | 195 | 255 |
| Edge distance                 | Ccr,N             | [mm] | 48   | 71  | 59  | 89  | 72  | 102 | 98  | 128 |

| Splitting failure          |                    |      |     |     |     |     |     |     |     |     |
|----------------------------|--------------------|------|-----|-----|-----|-----|-----|-----|-----|-----|
| Spacing                    | Scr,sp             | [mm] | 160 | 240 | 200 | 300 | 250 | 340 | 320 | 430 |
| Edge distance              | C <sub>cr,sp</sub> | [mm] | 80  | 120 | 100 | 150 | 125 | 170 | 160 | 215 |
| Installation safety factor | γinst              | [-]  | 1,2 | 1,2 | 1,2 | 1,0 | 1,0 | 1,0 | 1,0 | 1,0 |

<sup>1)</sup> Use restricted to anchoring statically indeterminate structural components

Table C2 - Displacement under tension load

| Size                               | -                     |      | M8                |     | M10               |     | M12 |      | M16  |      |
|------------------------------------|-----------------------|------|-------------------|-----|-------------------|-----|-----|------|------|------|
|                                    |                       |      | Red <sup>1)</sup> | Std | Red <sup>1)</sup> | Std | Red | Std  | Red  | Std  |
| Tension load in cracked concrete   | N                     | [kN] | 1,2               | 2,4 | 3,0               | 4,3 | 4,3 | 5,7  | 7,6  | 11,9 |
| Displacement                       | δηο                   | [mm] | 1,1               | 0,5 | 0,5               | 1,2 | 0,8 | 1,0  | 0,2  | 1,0  |
|                                    | $\delta_{N^{\infty}}$ | [mm] | 1,8               | 1,3 | 0,8               | 1,2 | 1,0 | 1,3  | 0,6  | 1,1  |
| Tension load in uncracked concrete | N                     | [kN] | 3,0               | 3,6 | 4,8               | 7,6 | 8,0 | 11,9 | 12,6 | 18,8 |
| Displacement                       | δηο                   | [mm] | 0,1               | 0,3 | 0,2               | 0,2 | 0,1 | 0,5  | 0,3  | 0,5  |
|                                    | $\delta_{N^{\infty}}$ | [mm] | 0,8               | 1,3 | 0,8               | 1,2 | 1,0 | 1,3  | 0,6  | 1,1  |

<sup>1)</sup> Use restricted to anchoring statically indeterminate structural components

### Rawlplug R-HPTIIA4 Stainless Steel Throughbolts Performances Characteristic resistance under tension load Displacement under tension load

<sup>2)</sup> Pull-out failure mode is not decisive

### Table C3 – Characteristic resistance under shear load

| Steel failure without lever arm |                |      |                       |                       |         |         |
|---------------------------------|----------------|------|-----------------------|-----------------------|---------|---------|
| ze                              |                | M8   | M10                   | M12                   | M16     |         |
|                                 |                |      | Red <sup>1)</sup> Std | Red <sup>1)</sup> Std | Red Std | Red Std |
| Characteristic resistance       | $V^0_{Rk,s}$   | [kN] | 11,7                  | 18,5                  | 24,6    | 45,4    |
| Ductility factor                | k <sub>7</sub> | [-]  | 1,0                   | 1,0                   | 1,0     | 1,0     |
| Partial safety factor           | γMs            | [-]  | 1,25                  | 1,25                  | 1,25    | 1,25    |

| Steel failure with lever arm |                                    |      |      |      |      |
|------------------------------|------------------------------------|------|------|------|------|
| Characteristic resistance    | M <sup>0</sup> <sub>Rk,s</sub> [Nm | ] 22 | 45   | 72   | 180  |
| Partial safety factor        | γMs [-]                            | 1,25 | 1,25 | 1,25 | 1,25 |

| Concrete pry-out failure   |                |     |     |     |     |     |     |     |     |     |
|----------------------------|----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Factor                     | k <sub>8</sub> | [-] | 1,0 | 1,0 | 1,2 | 1,0 | 1,0 | 2,0 | 2,0 | 2,0 |
| Installation safety factor | γinst          | [-] | 1,0 | 1,0 | 1,0 | 1,0 | 1,0 | 1,0 | 1,0 | 1,0 |

| Concrete edge failure      |                  |      |     |     |     |     |     |     |     |     |
|----------------------------|------------------|------|-----|-----|-----|-----|-----|-----|-----|-----|
| Effective length of anchor | <b>l</b> f       | [mm] | 32  | 47  | 39  | 59  | 48  | 68  | 65  | 85  |
| Anchor diameter            | d <sub>nom</sub> | [mm] | 3   | 3   | 1   | 0   | 1   | 2   | 1   | 6   |
| Installation safety factor | γinst            | [-]  | 1,0 | 1,0 | 1,0 | 1,0 | 1,0 | 1,0 | 1,0 | 1,0 |

<sup>1)</sup> Use restricted to anchoring statically indeterminate structural components

### Table C4 - Displacement under shear load

| Size                                         |                     | M8   |                   | M10 |                   | M12  |      | M    | 16   |      |
|----------------------------------------------|---------------------|------|-------------------|-----|-------------------|------|------|------|------|------|
|                                              |                     |      | Red <sup>1)</sup> | Std | Red <sup>1)</sup> | Std  | Red  | Std  | Red  | Std  |
| Shear load in cracked and uncracked concrete | V                   | [kN] | 6,7               | 6,7 | 5,8               | 10,6 | 14,1 | 14,1 | 25,9 | 25,9 |
| Displacement                                 | δνο                 | [mm] | 3,0               | 3,0 | 1,5               | 2,7  | 2,5  | 2,5  | 2,2  | 2,2  |
|                                              | $\delta_{V^\infty}$ | [mm] | 4,5               | 4,5 | 2,2               | 4,1  | 3,8  | 3,8  | 3,8  | 3,3  |

<sup>1)</sup> Use restricted to anchoring statically indeterminate structural components

| Rawlplug R-HPTIIA4 Stainless Steel Throughbolts                                       |           |
|---------------------------------------------------------------------------------------|-----------|
| Performances Characteristic resistance under shear load Displacement under shear load | Annex C 2 |

Table C5 - Characteristic values of resistance to tension load under fire exposure<sup>1)</sup>

| o:                                                     | -                     | -    |                       |            | MAAO              |        |                 |           | N440     |                       |
|--------------------------------------------------------|-----------------------|------|-----------------------|------------|-------------------|--------|-----------------|-----------|----------|-----------------------|
| Size                                                   |                       |      |                       | 18         | M <sup>-</sup>    | 10     | M               | 12        |          | 16                    |
|                                                        |                       |      | Red <sup>2)</sup>     | Std        | Red <sup>2)</sup> | Std    | Red             | Std       | Red      | Std                   |
| Characteristic fire resistance duration at 30 minutes  |                       |      |                       |            |                   |        |                 |           |          |                       |
| Steel failure                                          | $N_{Rk,s,fi}$         | [kN] | 0,7                   | 0,7        | 1,5               | 1,5    | 2,5             | 2,5       | 4,7      | 4,7                   |
| Pull-out failure                                       | $N_{Rk,p,fi}$         | [kN] | 0,8                   | 1,5        | 1,9               | 2,3    | 2,3             | 3,0       | 4,0      | 6,3                   |
| Concrete cone failure                                  | $N_{Rk,c,fi}$         | [kN] | 1,0                   | 2,7        | 1,7               | 4,8    | 2,9             | 6,9       | 6,1      | 12,0                  |
| Characteristic fire resistance duration at 60 minutes  |                       |      |                       |            |                   |        |                 |           |          |                       |
| Steel failure                                          | $N_{Rk,s,fi}$         | [kN] | 0,6                   | 0,6        | 1,2               | 1,2    | 2,1             | 2,1       | 3,9      | 3,9                   |
| Pull-out failure                                       | $N_{Rk,p,fi}$         | [kN] | 0,8                   | 1,5        | 1,9               | 2,3    | 2,3             | 3,0       | 4,0      | 6,3                   |
| Concrete cone failure                                  | $N_{Rk,c,fi}$         | [kN] | 1,0                   | 2,7        | 1,7               | 4,8    | 2,9             | 6,9       | 6,1      | 12,0                  |
| Characteristic fire resistance duration at 90 minutes  |                       |      |                       |            |                   |        |                 |           |          |                       |
| Steel failure                                          | $N_{Rk,s,fi}$         | [kN] | 0,4                   | 0,4        | 0,9               | 0,9    | 1,7             | 1,7       | 3,1      | 3,1                   |
| Pull-out failure                                       | $N_{Rk,p,fi}$         | [kN] | 0,8                   | 1,5        | 1,9               | 2,3    | 2,3             | 3,0       | 4,0      | 6,3                   |
| Concrete cone failure                                  | $N_{Rk,c,fi}$         | [kN] | 1,0                   | 2,7        | 1,7               | 4,8    | 2,9             | 6,9       | 6,1      | 12,0                  |
| Characteristic fire resistance duration at 120 minutes | S                     |      |                       |            |                   |        |                 |           |          |                       |
| Steel failure                                          | $N_{Rk,s,fi}$         | [kN] | 0,4                   | 0,4        | 0,8               | 0,8    | 1,3             | 1,3       | 2,5      | 2,5                   |
| Pull-out failure                                       | $N_{Rk,p,fi}$         | [kN] | 0,6                   | 1,2        | 1,5               | 1,8    | 1,8             | 2,4       | 3,2      | 5,0                   |
| Concrete cone failure                                  | $N_{Rk,c,fi}$         | [kN] | 0,8                   | 2,2        | 1,4               | 3,9    | 2,3             | 5,5       | 4,9      | 9,6                   |
| Spacing                                                | S <sub>cr,N</sub>     | [mm] | ] 4 x h <sub>ef</sub> |            |                   |        |                 |           |          |                       |
|                                                        | Smin                  | [mm] | 50                    | 55         | 70                | 70     | 120             | 90        | 150      | 135                   |
| Edge distance                                          | Ccr,N                 | [mm] |                       | •          | •                 | 2 x    | h <sub>ef</sub> |           |          |                       |
| Contra                                                 | [mm]                  |      |                       | wever if t |                   |        |                 |           |          |                       |
|                                                        | C <sub>min</sub> [mm] |      | the ed                | ge distar  | nce of the        | anchor | has to be       | e ≥ 300 n | nm and ≥ | ≥ 2 x h <sub>ef</sub> |

<sup>&</sup>lt;sup>1)</sup> In absence of other national regulations the partial safety factor for resistance under fire exposure.  $\gamma_{M,fi} = 1,0$  is recommended

Table C6 - Characteristic values of resistance to shear load under fire exposure

| Size                                                 |                                                                  |      | M                                   | 18  | M <sup>*</sup>           | 10       | M                                   | 12        | M <sup>*</sup> | 16      |
|------------------------------------------------------|------------------------------------------------------------------|------|-------------------------------------|-----|--------------------------|----------|-------------------------------------|-----------|----------------|---------|
|                                                      |                                                                  |      | Red <sup>1)</sup>                   | Std | Red <sup>1)</sup>        | Std      | Red)                                | Std       | Red            | Std     |
| Characteristic fire resistance duration at 30 minute | S                                                                |      |                                     |     |                          |          |                                     |           |                |         |
| Steel failure without lever arm                      | $V_{Rk,s,fi}$                                                    |      | 0,                                  | ,7  | 1,                       | 1,5 2,5  |                                     | ,5        | 4,7            |         |
| Steel failure with lever arm                         | $M_{Rk,s,fi}$                                                    | [Nm] | 0,                                  | ,7  | 1,                       | 9        | 3                                   | ,9        | 10             | ,0      |
| Characteristic fire resistance duration at 60 minute | S                                                                |      |                                     |     |                          |          |                                     |           |                |         |
| Steel failure without lever arm                      | $V_{Rk,s,fi}$                                                    | [kN] | 0,6 1,2                             |     |                          | 2        | ,1                                  | 3,        | 9              |         |
| Steel failure with lever arm                         | $M_{Rk,s,fi}$                                                    | [Nm] |                                     |     |                          |          | 3                                   | ,3        | 8,             | 3       |
| Characteristic fire resistance duration at 90 minute | S                                                                |      |                                     |     |                          |          |                                     |           |                |         |
| Steel failure without lever arm                      | $V_{Rk,s,fi}$                                                    | [kN] | 0,4                                 |     | 0,9                      |          | 1,7                                 |           | 3,1            |         |
| Steel failure with lever arm                         | $M_{Rk,s,fi}$                                                    | [Nm] | 0,4 1,2                             |     |                          | 2        | 2,6                                 |           | 6,             | 7       |
| Characteristic fire resistance duration at 120 minut | es                                                               |      |                                     |     |                          |          |                                     |           |                |         |
| Steel failure without lever arm                      | $V_{Rk,s,fi}$                                                    | [kN] | 0,                                  | ,4  | 0,                       | 8        | 1,3                                 |           | 2,             | 5       |
| Steel failure with lever arm                         | $M_{Rk,s,fi}$                                                    | [Nm] | 0,                                  | ,4  | 1,                       | 0        | 2                                   | ,1        | 5,             | 3       |
| Concrete pry-out failure                             |                                                                  |      |                                     |     |                          |          |                                     |           |                |         |
| Factor <sup>2)</sup>                                 | k <sub>8</sub> [-] 1,2                                           |      |                                     |     |                          |          |                                     |           |                | •       |
| Concrete edge failure                                |                                                                  |      |                                     |     | <sub>Rk,c,fi</sub> in co | ncrete C | 20/25 to                            | C50/60    | is determ      | ined by |
|                                                      | $V_{Rk,c,fi}^0 = 0,25 \text{ x } V_{Rk,c(\le 90)}^0 \text{ and}$ |      |                                     |     |                          |          |                                     |           |                |         |
|                                                      |                                                                  |      | V <sup>0</sup> <sub>Rk,c(≤120</sub> |     |                          |          |                                     |           |                |         |
|                                                      |                                                                  |      | alue of th<br>normal te             |     | cteristic r              | esistand | e V <sup>o</sup> <sub>Rk,c</sub> ir | n cracked | d concret      | Э       |

<sup>1)</sup> Use restricted to anchoring statically indeterminate structural components

| Rawlplug R-HPTIIA4 Stainless Steel Throughbolts                      |           |
|----------------------------------------------------------------------|-----------|
| Performances Characteristic values of resistance under fire exposure | Annex C 3 |

<sup>&</sup>lt;sup>2)</sup> Use restricted to anchoring statically indeterminate structural components

 $<sup>^{2)}</sup>$  The values of factor  $k_8$  and relevant values of  $N_{Rk,c,fi}$  given in the Table C5 have to be considered in the design

| Size                                         |                      |      | M                 | 18  | M <sup>2</sup>    | 10        | M <sup>*</sup>    | 12   | M                 | 16   |
|----------------------------------------------|----------------------|------|-------------------|-----|-------------------|-----------|-------------------|------|-------------------|------|
|                                              |                      |      | Red <sup>1)</sup> | Std | Red <sup>1)</sup> | Std       | Red <sup>1)</sup> | Std  | Red <sup>1)</sup> | Std  |
| Tension load                                 |                      |      |                   |     |                   |           |                   |      |                   |      |
| Steel failure                                |                      |      |                   |     |                   |           |                   |      |                   |      |
| Characteristic resistance                    | N <sub>Rk,s,C1</sub> | [kN] | 21                | ,2  | 33,6              |           | 44,8              |      | 82,6              |      |
| Partial safety factor                        | γMs,C1               | [-]  | 1,                | 5   | 1,5               |           | 1,5               |      | 1,5               |      |
| Pull-out failure                             |                      |      |                   |     |                   |           |                   |      |                   |      |
| Characteristic resistance in concrete C20/25 | $N_{Rk,p,C1}$        | [kN] | 3,0               | 6,0 | 7,5               | 9,0       | 9,0               | 12,0 | 16,0              | 25,0 |
| Installation safety factor                   | γinst                | [-]  | 1,2               | 1,2 | 1,2               | 1,0       | 1,0               | 1,0  | 1,0               | 1,0  |
| Shear load                                   | <u> </u>             | -    | -                 |     |                   |           |                   |      | -                 | -    |
| Steel failure without lever arm              |                      |      |                   |     |                   |           |                   |      |                   |      |
| Characteristic resistance                    | $V^0_{Rk,s,C1}$      | [kN] |                   | 6,7 |                   | 12,5      | 18                | ,4   | 39,0              |      |
| Partial safety factor                        | γMs,C1               | [-]  | 1,2               | 25  | 1.2               | 1,25 1,25 |                   | 25   | 1,25              |      |

| 1) Use rest | tricted to | anchoring | statically | indetermina | te struc | tural c | components |
|-------------|------------|-----------|------------|-------------|----------|---------|------------|

| Rawlplug R-HPTIIA4 Stainless Steel Throughbolts                                   |           |
|-----------------------------------------------------------------------------------|-----------|
| Performances Characteristic values of resistance under seismic action category C1 | Annex C 4 |

Table C8 - Characteristic values of resistance under seismic action category C2

| M12  |  |
|------|--|
| Std  |  |
|      |  |
|      |  |
| 44,8 |  |
| 1,5  |  |
|      |  |
| 4,2  |  |
| 1,0  |  |
|      |  |
|      |  |
| 11,1 |  |
| 1,25 |  |
|      |  |
|      |  |

<sup>1)</sup> Use restricted to anchoring statically indeterminate structural components

Table C9 - Displacement under tensile and shear load - seismic category C2

| Size                        |      | M10  | M12  |
|-----------------------------|------|------|------|
| $\delta_{\text{N,eq(DLS)}}$ | [mm] | 3,5  | 5,4  |
| $\delta$ N,eq(ULS)          | [mm] | 9,9  | 13,4 |
| $\delta$ V,eq(DLS)          | [mm] | 4,1  | 4,4  |
| $\delta$ V,eq(ULS)          | [mm] | 10,0 | 9,9  |

| Rawlplug R-HPTIIA4 Stainless Steel Throughbolts                                   |           |
|-----------------------------------------------------------------------------------|-----------|
| Performances Characteristic values of resistance under seismic action category C2 | Annex C 5 |