

Designated according to The Construction Products (Amendment etc.) (EU Exit) Regulations 2020

UK Technical Assessment	UKTA-0836-22/6110 of 01/06/2022				
Technical Assessment Body issuing the UK Technical Assessment:	British Board of Agrément				
Trade name of the construction product:	R-KER / RV200, R-KER-W / RV200-W and R-KER-S / RV200-S				
Product family to which the construction product belongs:	Area Code 33, Bonded anchor with rod with internally threaded socket and rebar for use in concrete				
Manufacturer:	RAWLPLUG S.A. ul. Kwidzyńska 6 51-416 Wrocław Poland				
Manufacturing plant(s):	Manufacturing Plant No. 3				
This UK Technical Assessment contains:	24 pages including 3 annexes, which form an integral part of this assessment				
This UK Technical Assessment is issued in accordance with The Construction Products (Amendment etc.) (EU Exit) Regulations 2020 on the basis of:	UKAD 330499-00-0601 "Bonded fasteners for use in concrete"				

Communication of this UK Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made with the written consent of the British Board of Agrément. Any partial reproduction must be identified as such.

1. Technical description of the product

R-KER / RV200, R-KER-W / RV200-W and R-KER-S / RV200-S are bonded anchors (injection type) consisting of an injection mortar cartridge using an applicator gun equipped with a special mixing nozzle and steel element.

The steel element consists of:

- anchor with rod with internally threaded socket sizes M6/Ø10 to M16/Ø24 made of:
 - galvanized carbon steel,
 - stainless steel,
 - high corrosion resistant stainless steel,
- rebar sizes Ø8 to Ø32.

The steel element is placed into a drilled hole previously injected (using an applicator gun) with a mortar with a slow and slight twisting motion. The rod or rebar is anchored by the bond between steel element, injection mortar and concrete.

An illustration and the description of the products are given in Annex A.

2. Specification of the intended use(s) in accordance with the applicable UK Assessment Document (hereinafter UKAD)

The performances given in Section 3 are only valid if the anchors are used in compliance with the specifications and conditions given in Annex B.

The performances given in this UK Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer or the Technical Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi static loads, displacements	See Annex C1 to C12

3.2 Safety in case of fire (BWR 2)

Not relevant.

3.3 Health, hygiene and the environment (BWR 3)

Not relevant.

3.4 Safety and accessibility in use (BWR 4)

Not relevant.

3.5 Protection against noise (BWR 5)

Not relevant.

3.6 Energy economy and heat retention (BWR 6)

Not relevant.

3.7 Sustainable use of natural resources (BWR 7)

No performance assessed.

4. Assessment and verification of constancy of performance (hereinafter AVCP) system applied

4.1 System of assessment and verification of constancy of performance

According to UKAD No. EAD 330499-00-0601 and Annex V of the Construction Products Regulation (Regulation (EU) 305/2011 as brought into UK law and amended, the system of assessment and verification of constancy of performance (AVCP) 1 applies.

5. Technical details necessary for the implementation of the AVCP system, as provided for in the applicable UKAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with the British Board of Agrément and made available to the UK Approved Bodies involved in the conformity attestation process.

for the product are laid down in Table 3.2 of UKAD 330499-00-0601.

5.1 UKCA marking for the product/ system must contain the following information:

- Identification number of the Approved Body
- Name/address of the manufacturer of the product/ system
- Marking with intention of clarification of intended use
- Date of marking
- Number of certificate of constancy of performance
- UKTA number.

On behalf of the British Board of Agrém	ent
	Guil
Date of Issue: 1 June 2022	Hardy Giesler Chief Executive

British Board of Agrément, Bucknalls Lane, Watford, Hertfordshire WD25 9BA

ANNEXES

These annexes apply to the product described in the main body of the UK Technical Assessment.

Foil capsule (CFS system) – 150 ml, 175 ml, 280ml, 300 ml, 310 ml, 380 ml, 400 ml, 550 ml, 600 ml. Imprint: RV200 or RV200-W ora RV200-S processing notes for installation, hazard code, curing time, processing time (depending on temperature) Mixer for foil capsule (CFS system)

Mixer standard plus adapter CFS+ for foil capsule

R-KER / RV200, R-KER-W / RV200-W and R-KER-S / RV200-S

Product description Cartridge types and sizes

Annex A 3

Table A1: Materials – rods with internally threaded socket

Designation	Materials
Rods with internally threaded socket made of zinc coated steel ¹⁾	Steel, property class 5.8 according to EN ISO 898-1; electroplated \ge 5 µm according to EN ISO 4042 or hot-dip galvanized \ge 45 µm according to EN ISO 10684
Rods with internally threaded socket made of stainless steel or high corrosion resistance stainless steel HCR ²⁾	Material 1.4401, 1.4404, 1.4571 (stainless steel) and 1.44529, 1,4565 and 1.4547 (high corrosion resistance stainless steel HCR) according to EN 10088; property class 70 (A4-70) according to EN ISO 3506

related threaded rods or fastening screws: zinc coated steel strength class 5.8 or 8.8 acc. to EN ISO 898-1; electroplated ≥ 5 µm acc. to EN ISO 4042 or hot-dip galvanized ≥ 45 µm acc. to EN ISO 10684
 related threaded rods or fastening screws: stainless steel 1.4401, 1.4404, 1.4571 acc. to EN 10088; property class 70 or 80 (A4-70 or A4-80) acc. to EN ISO 3506 or high corrosion resistance stainless

steel 1.4529, 1.4565, 1.4547 acc. to EN 10088

Table A2: Materials – rebars (according to EN 1992-1-1, Annex C, Tables C.1 and C.2N)

Product form	Bars and de	-coiled rods	
Class	В	С	
Characteristic yield strength fyk or f0,2k [N/mm ²]	400 te	o 600	
Minimum value of $k = (f_t / f_y)_k$		≥ 1,08	≥ 1,15 < 1,35
Characteristic strain at maximum force, ϵ_{uk} [%]		≥ 5,0	≥ 7,5
Bendability		Bend / Rebend test	
Maximum deviation from nominal mass (individual bar), [%]	Nominal bar size [mm] ≤ 8 > 8	± 6 ± 4	6,0 4,5
Bond: minimum relative rib area, f _{R,min}	Nominal bar size [mm] 8 to 12 > 12	0,C 0,C	940 956

Rib height h: The rib height h shall be: $0,05 \cdot \emptyset \le h \le 0,07 \cdot \emptyset$

Table A3: Materials – injection mortar

Product	Composition
R-KER / RV200, R-KER-W / RV200-W and R-KER-S / RV200-S	Bonding agent: vinylester resin styrene free Hardener: dibenzoyl peroxide Additive: quartz sand (filler)

R-KER / RV200, R-KER-W / RV200-W and R-KER-S / RV200-S

Product description Materials

Annex A 4

SPECIFICATION OF INTENDED USE

The anchors are intended to be used for anchorages for which requirements for mechanical resistance and stability as per the Basic Requirement 1 of Regulation (EU) 305/2011 shall be fulfilled and failure of anchorages made with these products would compromise the stability of the works, cause risk to human life and/or lead to considerable economic consequences.

Anchors subject to:

Static and quasi-static loads: rod with internally threaded socket sizes M6/Ø10 to M16/Ø24 and rebar Ø8 to Ø32.

Base material:

- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum to C50/60 at maximum according to EN 206-1.
- Uncracked concrete only.

Temperature ranges:

Installation temperature (temperature of substrate):

According to table B6.

In-service temperature:

The anchors may be used in the following temperature range:

- -40°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C).
- -40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C).
 Use conditions (environmental conditions):
- Elements made of galvanized steel may be used in structures subject to dry internal conditions.
- Elements made of stainless steel may be used in structures subject to dry internal conditions and also in concrete subject to external atmospheric exposure (including industrial and marine environment) or exposure in permanently damp internal conditions if no particular aggressive conditions exist. Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).
- Elements made of high corrosion resistant stainless steel may be used in structures subject to dry
 internal conditions and also in concrete subject to external atmospheric exposure or exposure in
 permanently damp internal conditions or in other particular aggressive conditions. Such particular
 aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of
 seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g.
 in desulphurization plants or road tunnels where de-icing materials are used).

Installation:

- Dry or wet concrete (use category I1).
- Flooded holes (use category I2).
- Installation direction D3 (downward and horizontal and upwards installation)
- The anchors are suitable for hammer drilled holes.

Design methods:

EOTA Technical Report TR 029 (September 2010) or CEN/TS 1992-4.

R-KER / RV200, R-KER-W / RV200-W and R-KER-S / RV200-S

Intended Use Specification

Installation Data Rod with internally threaded socket

Annex	в	2
///	_	_

Page 10 of 24 of UK Technical Assessment UKTA-08	0836-22/6110
--	--------------

		4		h _o h _{min}	4		•••••			
able B1: Installation data – inner threaded rod										
Size M6/ M8/ M8/ M8/ M10/ M10/ M12/ M16/ 10/75 12/75 12/90 16/75 16/100 16/100 24/125									M16/ 24/125	
Internally threaded diameter	dg	[mm]	6	8	8	10	10	12	16	
Diameter of sleeve	d	[mm]	10	12	12	16	16	16	24	
Drilling diameter	d₀	[mm]	12	14	14	20	20	20	28	
Diameter of the hole in the fixture	df	[mm]	7	9	9	12	12	14	18	
Depth of the drilling hole	h₀	[mm]				h _{ef} + 5 mm	ı			
Effective embedment depth = nominal embedment depth = anchor length	h _{ef} = h _{nom} = L	[mm]	75	75	90	75	100	100	125	
Minimum thickness of the concrete member	h _{min}	[mm]	105	105	120	115	140	140	181	
Max. torque moment	Tinst	[Nm]	3	5	5	10	10	20	40	
Thread engagement length	lg	[mm]	6-24	8-25	8-25	10-30	10-30	12-35	16-50	
Minimum spacing and edge	e dista	nce								
Minimum spacing	Smin	[mm]			0,5	$h_{ef} \ge 40$	mm			
Minimum edge distance	Cmin	[mm]		0,5 · h _{ef} ≥ 40 mm						

1

A

ّσ∣

σ

Table B2: Installation parameters of rebars

Size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32
Nominal diameter of rebar	d	[mm]	8	10	12	14	16	20	25	32
Drilling diameter	d₀	[mm]	12	14	18	18	22	26	32	40
Depth of the drilling hole	h₀	[mm]	h _{ef} + 5							
Embodmont donth	h _{ef, min}	[mm]	60	70	80	80	100	120	140	165
Embeament depth	h _{ef, max}	[mm]	100	120	145	145	190	240	290	360
Minimum thickness of the concrete member	h _{min}	[mm]	$ \begin{array}{c c} h_{ef} + 30 \text{ mm} \\ \geq 100 \text{ mm} \end{array} \hspace{1.5cm} h_{ef} + 2 \cdot d_0 \end{array} $							
Minimum spacing and edge	Minimum spacing and edge distance									
Minimum spacing	Smin	[mm]				0.5 · h _{ef}	≥ 40 mm			
Minimum edge distance	Cmin	[mm]		$0.5 \cdot h_{ef} \ge 40 \text{ mm}$						

R-KER / RV200, R-KER-W / RV200-W and R-KER-S / RV200-S

Installation Data Rebar

Dispensers	Cartridge or foil capsule size
Manual gun for coaxial cartridges	380, 400, 410 and 420 ml
Manual gun for side by side cartridges	345 ml
Manual gun for foil capsule in cartridge and coaxial cartridges	150, 175, 280, 300 and 310 ml
Manual gun for foil cansules CES+	300 to 600 ml
Cordless dispenser gun for coaxial cartridges	380, 400, 410 and 420 ml
Cordless dispenser gun for foil capsules	300 to 600 ml
Pneumatic gun for coaxial cartridges	380, 400, 410 and 420 ml

Installation Tools (2)

Table B3: Brush for rods with internally threaded socket

Size	M6/10	M8/12	M10/16	M12/16	M16/24
Brush diameter [mm]	14	16	22	22	30

Table B4: Brush for rebars

Size	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32
Brush diameter [mm]	14	16	20	20	24	28	37	42

Table B5: Piston plug size

Hole diameter [mm]	16	18	20	22	24	25	26	28	30	32	35	40	50
Piston plug R-NOZ-P description	Ø16	Ø18	Ø20 t	o Ø22	Ø	24 to Ø	26	Ø28	Ø30	to 32	Ø35	Ø40	Ø50

Table B6: Processing time and curing time

		Pi	rocessing (ope	n) time	Mini	mum curing t	ime ¹⁾
Mortar temperature	Temperature of substrate	RAWL R-KER /	RAWL R-KER-W/	AWL RAWL F ER-W/ R-KER-S/ R-		RAWL R-KER-W /	RAWL R-KER-S /
5°C	0°C	40 min.	12 min.	-	3 h	2 h	-
5°C	5°C	20 min.	8 min.	35 min.	2 h	1 h	12 h
10°C	10°C	12 min.	5 min.	20 min.	80 min.	45 min.	8 h
15°C	15°C	8 min.	3 min.	12 min.	60 min.	30 min.	6 h
20°C	20°C	5 min.	2 min.	9 min.	45 min.	10 min.	4 h
25°C	25°C	-	-	7 min.	-	-	3 h
25°C	30°C	2 min.	-	6 min.	20 min.	-	2 h
25°C	40°C	0.5 min.	-	5 min.	10 min.	-	45 min.

¹⁾ curing time shall be doubled for the wet concrete

R-KER / RV200, R-KER-W / RV200-W and R-KER-S / RV200-S

Installation data

Tools (3), processing time and curing time

	1. Drill hole to the required diameter and depth using a rotary percussive machine
	 2. Hole cleaning. cleaning hole with brush and hand pump: starting from the drill hole bottom blow the hole at least 4 times using the hand pump using the specified brush, mechanically brush out the hole at least 4 times starting from the drill hole bottom, blow at least 4 times with the hand pump.
The way	3. Insert cartridge into dispenser and attach nozzle. Dispense to waste until even colour is obtained (min.10 cm).
	4. Insert the mixing nozzle to the far end of the hole and inject resin, slowly withdrawing the nozzle as the hole is filled to 2/3 of its depth.
	5. Immediately insert the rod with internally threaded socket, slowly and with slight twisting motion. Remove any excess resin around the hole before it sets.
	 Leave the fixing undisturbed until the curing time elapses.
4,	7. Attach fixture and tighten the bolt to the required torque.

Installation instruction Rods with internally threaded socket

	1. Drill hole to the required diameter and depth using a rotary percussive machine
	 2. Hole cleaning. Cleaning hole with brush and hand pump: starting from the drill hole bottom blow the hole at least 4 times using the hand pump using the specified brush, mechanically brush out the hole at least 4 times starting from the drill hole bottom, blow at least 4 times with the hand pump.
The way	3. Insert cartridge into dispenser and attach nozzle. Dispense to waste until even colour is obtained (min.10 cm).
	4. Insert the mixing nozzle to the far end of the hole and inject resin, slowly withdrawing the nozzle as the hole is filled to 2/3 of its depth.
	5. Immediately insert the rebar, slowly and with slight twisting motion. Remove any excess resin around the hole before it sets.
	6. Leave the fixing undisturbed until the curing time elapses.

Installation instruction Rebars

 Inject from the bottom of the hole. Inject the product about 2/3 of the hole depth. For best performance use extension and appropriately sized piston plug assembled on the mixer.
2. Drive the rebar immediately into the hole. Use temporary interlocking element e.g wedges.
 Leave the fixing undisturbed until the curing time elapses. To avoid the slipping of the rebar during the open time of the product (due to the rebar own weight) use a temporary interlocking element.

Installation instruction Rebars – overhead installation

Table C1: Characteristic values of resistance to tension loads - rods with internally threaded socket

Size			M6/ 10/75	M8/ 12/75	M8/ 12/90	M10/ 16/75	M10/ 16/100	M12/ 16/100	M16/ 24/125
Steel failure				1	<u>I</u>	<u>I</u>		I	1
Steel failure with standard th	readed rod grade 5.8								
Characteristic resistance	N _{Rk} s	[kN]	10	18	18	29	29	42	78
Partial safety factor	ν _{Ms} ¹⁾	[-]				1.50			
Steel failure with standard th	readed rod grade 8.8								
Characteristic resistance	N _{Rk.s}	[kN]	16	29	29	46	46	67	126
Partial safety factor	γ _{Ms} ¹⁾	[-]		1		1.50	1	1	1
Steel failure with standard st	ainless steel threaded	rod A4-70							
Characteristic resistance	N _{Rk,s}	[kN]	14	26	26	41	41	59	110
Partial safety factor	γ _{Ms} ¹⁾	[-]			Į.	1.87			
Steel failure with standard st	ainless steel threaded	rod A4-80							
Characteristic resistance	N _{Rk,s}	[kN]	16	29	29	46	46	67	126
Partial safety factor	γ _{Ms} ¹⁾	[-]				1.60			
Steel failure with high corros	ion resistant stainless	steel thread	ed rod gra	de 70					
Characteristic resistance	N _{Rk,s}	[kN]	14	26	26	41	41	59	110
Partial safety factor	γ _{Ms} ¹⁾	[-]			Į.	1.87			
Resistance to combine	d pull-out and con	crete cone	failure i	n uncrac	ked cor	crete			
Characteristic resistance in u	uncracked concrete C	20/25							
Temperature range I:	€ TRk,ucr	[N.mm ⁻²]	7.5	9.0	9.0	9.5	9.5	8.5	7.0
Temperature range II:	τ _{Rk.ucr}	[N.mm ⁻²]	6.0	7.0	7.0	7.5	7.5	6.5	5.5
00 C/30 C									1.00
Increasing factor for $\tau_{Rk,ucr}$	NG.	C40/50			1.	07			1.00
in non-cracked concrete	ψς	C50/60			1.	00			1.00
Resistance to concrete	cone failure in un	cracked co	ncrete		1.	09			1.00
Effective anabarage depth			75	75	00	75	100	100	105
Ellective ancholage depth	l lef k ²⁾	[[]]]] [_]	75	75	90	10.1	100	100	125
concrete	Kuer N	[_]				11.0			
Edge distances and sna			concroto	cono a	nd enlitti	ing failu	ro		
Euge distances and spa		a puil-out,	concrete		iu spiitt	15 x h .			
					2.0	· h.c			15.h.(
Edge distance	$\begin{array}{c} c_{cr,sp} \text{ for } \\ h_{min} < h^{3)} < 2 \cdot h_{ef} \\ (c_{cr,sp} \text{ from linear} \\ interpolation) \end{array}$	[mm]			2 x h _{ef}	C _{er,Np}	C _{cr,sp}		1.0 Tie
	c _{cr,sp} for h ¹⁾ ≥ 2 · h _{ef}		C _{cr,N}						
Spacing	Scr,N Scr.sp	[mm]	mm] 3 x h _{ef}						
Partial safety factor for	combined pull-out	t, concrete	cone an	d splitti	ng failur	e	-		
Partial safety factors for in use category 1						1.2			
Partial safety factors for in use category 2	γinst ¹⁾	[-]			1	.2			1.4

¹⁾ In the absence of other national regulation ²⁾ Parameter for design acc. CEN/TS 1992-4-4:2009

 $^{3)}$ h – concrete member thickness.

R-KER / RV200, R-KER-W / RV200-W and R-KER-S / RV200-S

Characteristic resistance under tension loads – design method A Rods with internally threaded socket

							-		
Size			M6/ 10/75	M8/ 12/75	M8/ 12/90	M10/ 16/75	M10/ 16/100	M12/ 16/100	M16/ 24/125
Steel failure with standard thre	aded rod	grade 5	.8						
Characteristic resistance	V ⁰ _{Rk,s}	[kN]	5	9	9	14	14	21	39
Factor considering ductility	k 7	[-]	0.8	0.8	0.8	0.8	0.8	0.8	0.8
Partial safety factor	γMs	[-]				1.25			
Steel failure with standard thre	aded rod	grade 8	.8						
Characteristic resistance	V ⁰ _{Rk,s}	[kN]	8	15	15	23	23	34	63
Factor considering ductility	k 7	[-]	0.8	0,8	0,8	0,8	0,8	0,8	0,8
Partial safety factor	γMs	[-]	125						
Steel failure with standard stain	nless ste	el threac	ded rod A	4-70					
Characteristic resistance	V ⁰ _{Rk,s}	[kN]	7	13	13	20	20	29	55
Factor considering ductility	k 7	[-]	0.8	0.8	0.8	0.8	0.8	0.8	0.8
Partial safety factor	γMs	[-]				1.56	i		
Steel failure with standard stain	nless ste	el threac	ded rod A	4-80					
Characteristic resistance	V ⁰ _{Rk,s}	[kN]	8	15	15	23	23	34	63
Factor considering ductility	k 7	[-]	0.8	0.8	0.8	0.8	0.8	0.8	0.8
Partial safety factor	γMs	[-]				1.33			
Steel failure with high corrosio	n resista	nt stainl	ess stee	l threade	ed rod gr	ade 70			
Characteristic resistance	V ⁰ _{Rk,s}	[kN]	7	13	13	20	20	29	55
Factor considering ductility	k ₇	[-]	0.8	0.8	0.8	0.8	0.8	0.8	0.8
Partial safety factor	γMs	[-]				1.56			

Table C2: Shear loads for steel failure without lever arm - rods with internally threaded socket

Table C3: Shear loads for steel failure with lever arm – rods with internally threaded socket

Size				M8/ 12/75	M8/ 12/90	M10/ 16/75	M10/ 16/100	M12/ 16/100	M16/ 24/125
Steel failure with standard threa	aded rod	grade 5	.8						
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	8	19	19	37	37	65	166
Partial safety factor	γMs	[-]				1.25			
Steel failure with standard threa	aded rod	grade 8	.8						
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	12	30	30	60	60	105	266
Partial safety factor	γMs	[-]	1.25						
Steel failure with standard stair	nless stee	el thread	led rod A	4-70					
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	11	26	26	52	52	92	233
Partial safety factor	γMs	[-]				1.56			
Steel failure with standard stair	nless stee	el thread	led rod A	4-80					
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	12	30	30	60	60	105	266
Partial safety factor	γMs	[-]				1.33			
Steel failure with high corrosion	n resistaı	nt stainle	ess steel	threade	d rod gr	ade 70			
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	11	26	26	52	52	92	233
Partial safety factor	γMs	[-]				1.56			

R-KER / RV200, R-KER-W / RV200-W and R-KER-S / RV200-S

Characteristic resistance under shear loads – design method A Rods with internally threaded socket

Table C4: Characteristic values for shear loads – pry out and concrete edge failure – rods with internally threaded socket

Size			M6/ 10/75	M8/ 12/75	M8/ 12/90	M10/ 16/75	M10/ 16/100	M12/ 16/100	M16/ 24/125
Effective anchorage depth	h _{ef}	[mm]	75	75	90	75	100	100	125
Pry out failure									
Factor	k ₈	[-]	2	2	2	2	2	2	2
Partial safety factor	γмр	[-]				1.5			
Concrete edge failure: see of	lause 5	.2.3.4 of ⁻	Fechnical	Report TR	029				
Partial safety factor	γмс	[-]				1.5			

Table C5: Displacement under tension loads - rods with internally threaded socket

Size			M6/ 10/75	M8/ 12/75	M8/ 12/90	M10/ 16/75	M10/ 16/100	M12/ 16/100	M16/ 24/125
Characteristic displacement in uncracked C20/25 to C50/60 concrete under tension loads									
Admissible service load 1)	F	[kN]	7.1	10.3	10.3	14.6	14.6	17.4	23.2
Displacement	δ_{N0}	[mm]	0.21	0.22	0.22	0.24	0.24	0.30	0.34
Displacement	δ _{N∞}	[mm]	0.60	0.60	0.60	0.60	0.60	0.60	0.60

¹⁾ F = F_{Rk} / $\gamma_F \cdot \gamma_{Mc}$, with γ_F = 1.4

Table C6: Displacement under shear loads - rods with internally threaded socket

Size			M6/ 10/75	M8/ 12/75	M8/ 12/90	M10/ 16/75	M10/ 16/100	M12/ 16/100	M16/ 24/125
Characteristic displacement	t under	shear lo	ads						
Admissible service load 1)	F	[kN]	6.4	11.6	11.6	18.4	18.4	26.7	49.8
Dianlagoment	δνο	[mm]	2.5	2.5	2.5	2.5	2.5	2.5	2.5
Displacement	δ _{V∞}	[mm]	3.7	3.7	3.7	3.7	3.7	3.7	3.7

 $\overline{{}^{1)} \mathbf{F}} = \mathbf{F}_{\mathsf{Rk}} / \gamma_{\mathsf{F}} \cdot \gamma_{\mathsf{Mc}}, \text{ with } \gamma_{\mathsf{F}} = 1.4$

R-KER / RV200, R-KER-W / RV200-W and R-KER-S / RV200-S

Characteristic resistance under tension loads – design method A. Displacement under service loads: tension and shear. Rods with internally threaded socket

								-				
Size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32		
Steel failure												
Steel failure with reinfor	cing bar B500B			-		-	-					
Characteristic resistance	N _{Rk,s}	[kN]	27.6	43.2	62.2	84.7	110.6	172.8	270.0	442.3		
Partial safety factor	$\gamma_{Ms}{}^{1)}$	[-]					1.4					
Combined pull-out and concrete cone failure												
Characteristic resistance in uncracked concrete C20/25												
Temperature range I: 40°C/24°C	τ _{Rk.ucr}	[N.mm ⁻ ²]	11	10	10	9	9	7.5	7	6.5		
Temperature range II: 80°C/50°C	τ _{Rk.ucr}	[N.mm ⁻ ²]	9	8	8	7	7	6	6	5		
Increasing factor for		C30/37			1.04							
τ _{Rk.ucr} in uncracked	Ψc	C40/50			1.07		1.00					
concrete		C50/60			1.09							
Partial safety factors for use category 1 and 2	$\gamma_{Mc} = \gamma_{Mp}$	[-]	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8		
Resistance to concrete	e cone failure in un	cracked c	oncrete					-		-		
Effective anchorage	min	[mm]	60	70	80	80	100	120	140	165		
depth h _{ef}	max	[mm]	100	120	145	145	190	240	290	360		
Factor for uncracked	k _{ucr} ²⁾	[-]					10.1	1	•	•		
concrete	k _{ucr.N}	[-]					11.0					
Edge distances and sp	bacing for combine	d pull-out	concre	te cone	and s	plitting	failure					
	C _{cr.N}					1.	5 x h _{ef}					
	c _{crsp} for h _{min}		2.5	· h _{ef}		2.0 · h	ef	1.5 · h _{ef}				
Edge distance	c _{crsp} for h _{min} < h ³ < 2 ⋅ h _{ef} (c _{crsp} from linear interpolation)	[mm]				2 x h _{ef} h _{min}	C _{cr,Np} C _{cr,S}	3p	6 1.00 1.8 140 290 1.5 · h _{ef}			
	c _{cr,sp} for h ¹⁾ ≥ 2 · h _{ef}		C _{cr.Np}									
Spacing	S _{cr,sp}	[mm]				2.0	· C _{crsp}					
Partial safety factor fo	r combined pull-ou	t concrete	cone a	nd spli	itting fa	ilure						
Partial safety factors for in use category 1	1)						1.0					
Partial safety factors for in use category 2	γinst ¹⁾	[-]					1.2					

Table C7: Characteristic values of resistance to tension loads - reinforcing bars

¹⁾ In the absence of other national regulation
 ²⁾ Parameter for design acc. CEN/TS 1992-4-4:2009
 ³⁾ h – concrete member thickness

R-KER / RV200, R-KER-W / RV200-W and R-KER-S / RV200-S

Characteristic resistance under tension loads – design method A Reinforcing bars

Table C8: Characteristic values of resistance to shear loads for steel failure without lever arm – reinforcing bars

Size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32
Steel failure with reinforcing bars										
Characteristic resistance 1)	V _{Rk,s}	[kN]	13.8	21.6	31.1	42.3	55.3	86.4	135.0	221.2
Factor considering ductility	k 7	[-]	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
Partial safety factor	γMs	[-]				1	.5			

¹⁾ The characteristic resistance V_{Rk,s} shall be determined acc. to Technical Report TR 029, equation (5.5)

Table C9: Characteristic values of resistance to shear loads for steel failure with lever arm – reinforcing bars

Size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32
Steel failure with reinforcing I	oars									
Characteristic resistance 1)	M ⁰ _{Rk,s}	[Nm]	33	65	112	178	265	518	1012	2123
Partial safety factor	γMs	[-]				1	.5			

¹⁾ The characteristic resistance M⁰_{Rk,s} shall be determined acc. to Technical Report TR 029, equation (5.6b)

R-KER / RV200, R-KER-W / RV200-W and R-KER-S / RV200-S

Characteristic resistance under tension loads – design method A Reinforcing bars

Table C10: Concrete pry out failure and concrete edge failure - reinforcing bars

Size	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32		
Pry out failure										
Factor	k ₈	[-]	2							
Partial safety factor	γмр	[-]	1.5							
Concrete edge failure: see clause 5.2.3.4 of Technical Report TR 029										
Partial safety factor	γмс	[-]	1.5							

Table C11: Displacement under tension loads - reinforcing bars

Size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32	
Characteristic displacement in uncracked concrete C20/25 to C50/60 under tension loads											
Admissible service load 1)	F	[kN]	6.9	9.1	13.4	12.8	19.2	24.4	33.5	44.6	
	δ _{N0}	[mm]	0.20	0.30	0.35	0.35	0.35	0.41	0.45	0.47	
Displacement	δ _{N∞}	[mm]	0.60	0.60	0.60	0.60	0.60	0.60	Ø25 33.5 0.45 0.60	0.60	

¹⁾ F = F_{Rk} / $\gamma_F \cdot \gamma_{Mc}$, with γ_F = 1.4

Table C12: Displacement under shear loads – reinforcing bars

Size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32	
Characteristic displacement in uncracked concrete C20/25 to C50/60 under shear loads											
Admissible service load 1)	F	[kN]	3.7	5.8	8.4	8.4	15.7	24.5	35.3	55.6	
	δ_{V0}	[mm]	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	
Displacement	δ _{V∞}	[mm]	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	

¹⁾ F = F_{Rk} / $\gamma_F \cdot \gamma_{Mc}$, with γ_F = 1.4

R-KER / RV200, R-KER-W / RV200-W and R-KER-S / RV200-S

Characteristic resistance under tension loads – design method A. Displacement under service loads: tension and shear. Reinforcing bars with internally threaded socket

British Board of Agrément, Bucknalls Lane, Watford, Hertfordshire WD25 9BA